Materials Science & Engineering Colloquium
Date: September 25, 2015 from 11:00 am to 12:00 pm EDT
Location: Columbia University
Morningside Campus
S.W. Mudd, Room 214
Contact: For further information regarding this event, please contact Svitlana Samoilina by sending email to ss4198@columbia.edu or by calling 212-851-4266.
Info: Click Here to Visit Website.
Bookmark and Share Sossina M. Haile
Department of Materials Science and Engineering, Northwestern University

"Insights into Proton Transport in Superprotonic Solid Acids"

Superprotonic solid acid electrolytes, materials with chemical and physical properties intermediate between conventional acids (e.g., H3PO4) and conventional salts (e.g., Cs3PO4) have emerged as attractive candidates for fuel cell and other electrochemical applications. Key characteristics of these materials are tetrahedral oxyanion groups linked by hydrogen bonds, and a polymorphic structural transition to a disordered state at moderate temperatures. Rapid oxyanion reorientation and dynamic disorder of the hydrogen bond network facilitate high proton conductivity in the high temperature phase. Materials exhibiting a superprotonic transition include CsHSO4, Cs3H(SeO4)2, CsH2PO4, and Cs2(HSO4)(H2PO4). Here we review the present state of understanding of proton transport mechanisms and the factors governing the transition behavior as gathered from macroscale measurements of conductivity and thermal properties and from atomistic level studies using nuclear magnetic resonance spectroscopy. We focus in particular on CsH2PO4, the technologically most significant superprotonic solid acid, and its chemical modifications produced by substitution on either the alkali metal or proton site (deuterated materials). Dramatic changes in phase behavior and proton conductivity can be induced by only minor changes in chemistry, suggesting routes for tuning behavior to meet desired outcomes.

Host: Siu-Wai Chan